Multilevel Functional Principal Component Analysis.

نویسندگان

  • Chong-Zhi Di
  • Ciprian M Crainiceanu
  • Brian S Caffo
  • Naresh M Punjabi
چکیده

The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of sleep and its impacts on health outcomes. A primary metric of the SHHS is the in-home polysomnogram, which includes two electroencephalographic (EEG) channels for each subject, at two visits. The volume and importance of this data presents enormous challenges for analysis. To address these challenges, we introduce multilevel functional principal component analysis (MFPCA), a novel statistical methodology designed to extract core intra- and inter-subject geometric components of multilevel functional data. Though motivated by the SHHS, the proposed methodology is generally applicable, with potential relevance to many modern scientific studies of hierarchical or longitudinal functional outcomes. Notably, using MFPCA, we identify and quantify associations between EEG activity during sleep and adverse cardiovascular outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel sparse functional principal component analysis.

We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we con...

متن کامل

Generalized Multilevel Functional-on-Scalar Regression and Principal Component Analysis

This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating phys...

متن کامل

Clustering Probabilistic Sleep Microstate Curves: a Functional Data Analysis Approach

We introduced and validated an EEG data-based model of the sleep process with an arbitrary number of different sleep states and a high time resolution allowing modelling of sleep microstructure. The proposed probabilistic sleep model describes sleep via posterior probabilities of a finite number of microstates. Using the model, we extracted objective sleep parameters describing quantitative and...

متن کامل

Generalized multilevel function-on-scalar regression and principal component analysis.

This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating phys...

متن کامل

Multilevel functional clustering analysis.

In this article, we investigate clustering methods for multilevel functional data, which consist of repeated random functions observed for a large number of units (e.g., genes) at multiple subunits (e.g., bacteria types). To describe the within- and between variability induced by the hierarchical structure in the data, we take a multilevel functional principal component analysis (MFPCA) approac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The annals of applied statistics

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2009